Ginsenoside-Rg ${ }_{6}$, a Novel Triterpenoid Saponin from the Stem-Leaves of Panax ginseng C. A. Mey.

Xiu Wei YANG^{1}, Long Yun LI^{2}, Jian Ming TIAN ${ }^{2}$, Zhi Wei ZHANG ${ }^{2}$, Jin Mei YE^{2}, Wei Fang Gu ${ }^{2}$
${ }^{1}$ National Research Laboratory of Natural \& Biomimetic Drugs, Peking University, Beijing 100083
${ }^{2}$ Academy of Chinese Traditional Medicine and Materia Medica of Jilin Province, Changchun 130021

Abstract

A novel dammarane-type triterpene oligoglycoside, named ginsenoside- $\mathrm{Rg}_{6} \mathbf{3}$, was isolated from the stem-leaves of Panax ginseng C. A. Mey., together with two known ones, $20(S)$-ginsenoside- $\mathrm{Rg}_{2} \quad 1$ and $20(R)$-ginsenoside- $\mathrm{Rg}_{2} \quad 2$. On the basis of chemical and physicochemical evidence, the structure of ginsenoside- Rg_{6} have been elucidated as $6-\mathrm{O}-\alpha$-L-rhamnosyl-($1 \rightarrow 2$)- β-D-glucopyranosyl-dammarane-(E)-20(22), $\quad 24$-diene-3 $\beta, \quad 6 \alpha$, 12β-triol.

Keywords: Panax ginseng C. A. Mey., stem-leaves, triterpenoid, ginsenoside-Rg ${ }_{6}$.

There is growing evidence in the literature that the root of Panax ginseng C. A. Mey. (ginseng radix), the well known traditional herbal remedy used in Chinese medicine for thousands of years, possesses an array of interesting pharmacological actions, such as cardioprotection, vasorelaxant, antistress, a stimulating activity of the central nervous system with effects on memory, learning and behavious. The biologically active constituents of ginseng radix have been pursued extensively and in recent years various ginsenosides, the dammarane-type triterpene oligoglycosides, have been characterized as the principal ingredients ${ }^{1-8}$. The stem-leaves of P. ginseng have been also recorded in "The Pharmacopoeia of Chinese People's Republic"(edited 2000). As a part of eluci-dating the biologically active principles of the stem-leaves of P. ginseng, we describe the structural determination of a novel dammarane-type triterpene oligoglycoside named as ginsenoside- $\mathrm{Rg}_{6} 3$.

The $\mathrm{H}_{2} \mathrm{O}$ extract of the dried stem-leaves of Panax ginseng was salting-out by NaCl to give a precipitate. The precipitate was dissolved in $\mathrm{H}_{2} \mathrm{O}$ and then subjected to adsorption resin column eluting in a stepwise manner with $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ mixture to afford the total ginsenosides. The total ginsenosides was rechromatographed by reverse phase HPLC on C_{18} column eluting with $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ to get $20(S)$-ginsenoside $\mathrm{Rg}_{2} \mathbf{1}$, $20(R)$-ginsenoside $\mathrm{Rg}_{2} 2$ and compound $\mathbf{3}$, respectively.

3 was isolated as white powder. It was positive to Liebermann-Burchard and Molish reactions. Acid hydrolysis of $\mathbf{3}$ yielded an aglycone and two sugars which were
identified as glucose and rhamnose by PC comparison with authentic samples. The IR spectrum displayed strong absorption bands at 3420 and $1080 \mathrm{~cm}^{-1}$ suggestive of the oligoglycosidic structure. The electro-spray ionization mass spectrometry (ESI-MS) showed the fragment ion peaks at $m / z 767[\mathrm{M}+\mathrm{H}]^{+}$and $620[\mathrm{M}-\text { rhamnosyl }]^{+}$. Its molecular formula $\mathrm{C}_{42} \mathrm{H}_{71} \mathrm{O}_{12}$ was determined by the high-resolution secondary-ion (HR-SI)-MS m/z $767.4951[\mathrm{M}+1]^{+}$(calcd for $\mathrm{C}_{42} \mathrm{H}_{71} \mathrm{O}_{12} 767.4946$).

Detailed analysis of the ${ }^{1} \mathrm{H}$ (Table 1) and ${ }^{13} \mathrm{C}$ (Table 2) NMR spectra of $\mathbf{3}$ by ${ }^{1} \mathrm{H}^{1}{ }^{1} \mathrm{H}$ COSY, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY, HMQC and HMBC suggested the presence of eight methyl, one methyl doublet, two olefinic, and two anomeric proton signals. All these data suggested that $\mathbf{3}$ to be a dammarane-type triterpenoidal diglycoside with double bonds. The ${ }^{13} \mathrm{C}$ NMR spectral data of $\mathbf{3}$ was similar to that of $20(S)$ - ginsenoside $\mathrm{Rg}_{2} \mathbf{1}$ and 20 (R)-ginsenoside $\mathrm{Rg}_{2} 2$ except for the signals assigned to C_{17} side-chain. These results indicated that $\mathbf{3}$ may be a compound closely related to $\mathbf{1}$ and 2 (see Scheme 1). Further comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 3 with those of ginsenoside $\mathrm{Rh}_{4} \mathbf{4}^{4}$, ginsenoside $\mathrm{Rg}_{5} 5^{5-7}$, ginsenoside $\mathrm{Rg}_{4} 6^{10}$, and ginsenoside $\mathrm{Rh}_{3} 7^{11}$ showed that the signals of C_{17} side-chain were similar to those of $\mathbf{4}$ and 5 (see Table 2) but different from those of 6 and 7 (see Table 2). The stereochemistry of the double bond at C-20 (22) was supposed to be entgegen (E) from the fact that C_{21}-methyl signal was observed at δ $13.0^{4,12}$ in the ${ }^{13} \mathrm{C}$ NMR spectrum, nuclear Overhauser effect (NOE) correlation between $\mathrm{C}_{21}-\mathrm{Me}$ and $\mathrm{H}-23$ was observed, but no NOE correlation between $\mathrm{C}_{21}-\mathrm{Me}$ and $\mathrm{H}-22$ could be observed. These findings led us to conclude the structure of $\mathbf{3}$ as 6-O- α-L-rhamnosyl- ($1 \rightarrow 2$)- β-D-glucopyranosyl-dammarane- (E)-20 (22), 24-diene-3 β, $6 \alpha, 12 \beta$-triol (Sche- me 1), a novel compound, named ginsenoside- Rg_{6}.

Table $1 \quad{ }^{1} \mathrm{H}$ NMR Spectral Data (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) of Compound 3

H	$\delta_{\mathrm{H}} ; \mathrm{J} / \mathrm{Hz}$	H	$\delta_{H} ; \mathrm{J} / \mathrm{Hz}$	H	$\delta_{\mathrm{H}} ; \mathrm{J} / \mathrm{Hz}$	H	$\delta_{\mathrm{H}} ; \mathrm{J} / \mathrm{Hz}$
1 a	0.83 m	13 a	1.91 m	24	5.18 t	G-4	$\begin{gathered} \hline 4.18 \mathrm{t} \\ (8.5) \end{gathered}$
1β	1.41 m				(6.5)		
2 a	1.74 m	15 a	1.47 m	26	1.59 s	G-5	3.95 m
2β	1.81 m	15β	1.64 m				
$3 \times$	$\begin{aligned} & 3.45 \mathrm{dd} \\ & (5.0,11.3) \end{aligned}$	$\begin{aligned} & 16 \alpha \\ & 16 \beta \end{aligned}$	$\begin{aligned} & 1.56 \mathrm{~m} \\ & 1.83 \mathrm{~m} \end{aligned}$	27	1.51 s	G-6a	$\begin{array}{r} 4.35 \mathrm{dd} \\ (4.5,10.0) \end{array}$
						G-6b	$\begin{array}{r} 4.50 \mathrm{dd} \\ (4.5,10.0) \end{array}$
5 a	$\begin{aligned} & 1.38 \mathrm{~d} \\ & (9.5) \end{aligned}$	17 a	2.69 m	28 a	2.09 s	R-1	6.46 br s
6β	$\begin{aligned} & 4.65 \mathrm{dd} \\ & (3.0,9.5) \end{aligned}$	18β	0.94 s	29β	0.92 s	R-2	4.77 m
7 a	$\begin{aligned} & 1.99 \mathrm{dd} \\ & (2.5,10.8) \end{aligned}$	19β	1.22 s	30 a	1.33 s	R-3	4.69 m
7β	$\begin{aligned} & 2.25 \mathrm{dd} \\ & (2.5,10.8) \end{aligned}$						
9 a	$\begin{aligned} & 1.52 \mathrm{~d} \\ & (10.5) \end{aligned}$	21	1.77 s	G-1	$\begin{gathered} 5.24 \mathrm{~d} \\ (7.0) \end{gathered}$	R-4	4.29 m
11 a	1.36 m	22	5.43 t	G-2	4.33 m	R-5	4.94 m
11β	1.96 m	22	(6.5)	G-2	4.33 m	R-S	4.94 m
12 a	$\begin{aligned} & 3.89 \mathrm{ddd} \\ & (5.0,8.8,10.0) \end{aligned}$	$23 a$$23 \beta$	$\begin{aligned} & 1.85 \mathrm{t} \\ & (6.5) \end{aligned}$	G-3	4.31 m	R-6	$\begin{array}{r} 1.76 \mathrm{~d} \\ (6.0) \end{array}$
			2.74 t				

(6.5)

In HMBC spectrum of $\mathbf{3}$, the obvious correlations between $\delta_{\mathrm{C}} 50.0(\mathrm{C}-17)$ and $\delta_{\mathrm{H}} 1.77$ (Me-21) $5.43(\mathrm{H}-22), 2.74(\mathrm{H}-23), 1.91(\mathrm{H}-13), \delta_{\mathrm{C}} 140.0(\mathrm{C}-20)$ and $\delta_{\mathrm{H}} 2.74(\mathrm{H}-23), 2.69$ $(\mathrm{H}-17), 1.91(\mathrm{H}-13), 1.77(\mathrm{Me}-21), 1.56(\mathrm{H}-16 \alpha), 1.83(\mathrm{H}-16 \beta), \delta_{\mathrm{C}} 123.0(\mathrm{C}-22)$ and δ_{H} $5.18(\mathrm{H}-24), 2.74(\mathrm{H}-23), 2.69(\mathrm{H}-17), 1.77(\mathrm{Me}-21), \delta_{\mathrm{C}} 123.7(\mathrm{C}-24)$ and $\delta_{\mathrm{H}} 5.43(\mathrm{H}-22)$, $1.59(\mathrm{Me}-26), 1.51(\mathrm{Me}-27), \delta_{\mathrm{C}} 131.2(\mathrm{C}-25)$ and $\delta_{\mathrm{H}} 2.74(\mathrm{H}-23), 1.59(\mathrm{Me}-26), 1.51$ $(\mathrm{Me}-27), \delta_{\mathrm{C}} 101.7$ (Glc-C-1) and $\delta_{\mathrm{H}} 4.65$ (H-6), 4.33 (Glc-H-3), and $\delta_{\mathrm{C}} 101.8$ (Rha- C-1) and $\delta_{\mathrm{H}} 4.31$ (Glc-H-2), 4.69 (Rha-H-3) also supported the proposed structure (Scheme 1).

Table $2{ }^{13} \mathrm{C}$ NMR Spectral Data (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) of Compounds 1 - 7

C	Compounds						
	1	2	3	4	5	6	7
1	39.5 t	39.6 t	39.9 t	38.9	39.2	39.5 t	39.3
2	27.6 t	27.7 t	27.6 t	27.3	28.0	27.8 t	27.0
3	78.3 d	78.5 d	78.3 d	79.5	88.8	78.3 d	88.3
4	39.9 s	40.0 s	39.6 s	39.8	40.1	40.1 s	40.3
5	60.7 d	60.8 d	60.7 d	60.9	56.3	60.9 d	56.4
6	74.2 d	74.1 d	74.1 d	78.0	18.3	74.4 d	18.5
7	46.0 t	46.0 t	46.1 t	44.7	35.2	46.2 t	35.3
8	39.3 s	39.3 s	41.3 s	40.8	39.6	41.4 s	37.1
9	49.6 d	50.5 d	50.2 d	50.0	50.7	50.1 d	50.9
10	41.0 s	41.1 s	39.4 s	39.2	36.9	40.0 s	39.7
11	31.9 t	32.2 t	32.1 t	31.1	32.1	32.2 t	32.2
12	70.9 d	70.9 d	72.5 d	71.2	72.5	69.5 d	71.9
13	48.0 d	48.8 d	50.6 d	49.8	50.3	50.7 d	50.4
14	51.6 s	51.7 s	50.8 s	50.3	50.9	50.9 s	51.2
15	31.2 t	31.3 t	32.5 t	32.0	32.5	32.6 t	32.6
16	26.7 t	26.6 t	27.6 t	26.9	26.6	27.1 t	26.8
17	54.6 d	49.7 d	50.0 d	50.1	50.8	51.2 d	51.2
18	17.6 q	17.7 q	17.6 q	17.2	16.5	17.8 q	16.8
19	17.5 q	17.7 q	17.6 q	17.2	16.4	17.7 q	16.5
20	72.9 s	73.0 s	140.0 s	139.5	140.1	140.1 s	140.2
21	26.9 q	22.7 q	13.0 q	12.5	13.1	27.5 q	27.4
22	35.7 t	43.2 t	123.0 d	122.9	123.2	123.5 d	123.8
23	22.9 t	22.6 t	27.4 t	29.4	27.4	23.0 t	30.0
24	126.2 d	126.0 d	123.7 d	124.7	123.5	125.4 d	125.4
25	130.7 s	130.7 s	131.2 s	130.7	131.2	131.3 s	131.5
26	25.8 q	25.8 q	25.6 q	25.1	25.6	25.8 q	25.7
27	16.8 q	17.6 q	16.8 q	16.8	17.7	17.6 q	17.7
28	32.1 q	32.2 q	32.1 q	31.1	28.7	32.6 q	28.2
29	17.6 q	17.6 q	17.5 q	15.8	15.7	17.2 q	15.8
30	17.0 q	17.2 q	17.1 q	16.2	16.9	17.0 q	17.0
1^{\prime}	101.7 d	101.7 d	101.7 d	105.4	105.0	101.8 d	106.9
2^{\prime}	79.3 d	79.4 d	79.3 d	74.8	83.3	79.5 d	75.7
3^{\prime}	78.4 d	78.4 d	78.4 d	79.0	78.1	78.4 d	78.7
4^{\prime}	72.5 d	72.3 d	72.5 d	72.0	71.5	72.6 d	71.9
5^{\prime}	78.3 d	78.4 d	78.4 d	77.5	77.8	78.4 d	78.3
$6{ }^{\prime}$	62.9 t	63.1 t	63.0 t	62.5	62.6	63.2 t	63.1
1 "	101.8 d	101.9 d	101.8 d		105.9	102.0 d	
2"	72.2 d	72.6 d	72.2 d		77.0	72.3 d	
$3 \prime \prime$	72.3 d	72.4 d	72.3 d		78.2	72.4 d	
$4^{\prime \prime}$	74.0 d	74.3 d	74.3 d		71.5	74.2 d	

$5^{\prime \prime}$	69.4 d	69.4 d	69.4 d	78.0	69.5 d
$6^{\prime \prime}$	18.7 q	18.7 q	18.7 q	62.7	18.8 q

$\overline{4}=$ ginsenoside $\mathrm{Rh}_{4}, \mathbf{5}=$ ginsenoside $\mathrm{Rg}_{5}, \mathbf{6}=$ ginsenoside $\mathrm{Rg}_{4}, \mathbf{7}=$ ginsenoside Rh_{3}
Scheme 1 The Structures of Compounds 1-7

Acknowledgment

This work is supported by "The Ninth 5-year Plan" Key Science and Technique R \& D Programme Foundation of China (96-901-01-12A).

References

1. X. W. Yang, Chin. Pharm. J., 1985, $20(8), 489$.
2. X. W. Yang, Zhongchengyaoyanjiu, 1984, (5), 30.
X. W. Yang, Chin. J. Magn. Reson., 2000, 17(1), 9.
N. I. Baek, D. S. Kim, Y. H. Lee, J. D. Park, S. I. Kim, The Ginseng Review, 1995, (20), 84.
N. I. Baek, S. I. Kim, J. H. Park, J. H. Ryu, J. D. Park, Y. H. Lee, J. H. Park, T. H. Kim, J. M. Kim, The Ginseng Review, 1996, (22), 88.
3. S. I. Kim, J. H. Park, J. H. Ryu, J. D. Park, Y. H. Lee, J. H. Park, T. H. Kim, J. M. Kim, N. I. Baek, Arch. Pharm. Res., 1996, 19(5), 551.
4. N. I. Baek, D. S. Kim, Y. H. Lee, J. D. Park, C. B. Lee, S. I. Kim, Planta Med., 1996, 62 (1), 86.
5. C. Wakabayashi, Biochem. Biophy. Res. Com., 1998, 246, 725.
6. The Pharmacopoeia of Chinese People's Republic, Vol. 1, 2000, p.7.
7. S. L. Zhang, Y. J. Chen, C. B. Cui, G. X. He, S. X. Xu, Y. P. Pei, X. S. Yao, T. R. Zhu, Acta Pharm. Sin., 1989, 24 (11), 877.
8. Y. J. Chen, S. X. Su, Q. F. Ma, Y. P. Pei, H. Xie, X. S. Yao, Acta Pharm. Sin., 1987, 22 (9), 685.
9. D. S. Kim, N. I. Baek, Y. H. Lee, J. D. Park, S. I. Kim, Yakhak Hoeji, 1995, 39 (1), 85.

Received 20 April 2000

